Nicolas Auguin

PhD graduate
Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology,  Hong Kong
Email: nicolas.auguin (at) connect (dot) ust (dot) hk
Orcid     ResearchGate     LinkedIn    

I am currently a quantitative researcher at Y-intercept (Hong Kong) Limited. Until 2021, I was working as a quant researcher at Qube Research & Technologies (Hong Kong) Limited.

In 2019, I graduated from HKUST with a PhD degree in Electronic and Computer Engineering. I was under the supervision of Prof. Matthew McKay (now at the University of Melbourne, Australia) and Prof. David Jimenez-Morales (now at the University of Granada, Spain). From Sep. 2016 until Feb. 2017, I was a visiting student at the Large Networks and Systems Group (LANEAS) at CentraleSupélec (France), where I was advised by Prof. Romain Couillet (now at the University of Grenoble-Alpes, France). My PhD thesis focused on random matrix theory, statistical signal processing, and machine learning.

I also obtained a Master of Philosophy from the Hong Kong University of Science and Technology (Hong Kong) in 2013, and a Diploma of Engineering from Télécom SudParis (Evry, France) in 2014.


  • 2014 – 2019: PhD in Electronic and Computer Engineering, The Hong Kong University of Science & Technology, Hong Kong
    Thesis: Random Matrix Theory Applied to the Robust Estimation of Large Covariance Matrices
  • 2012 – 2013: MPhil in Electronic and Computer Engineering, The Hong Kong University of Science & Technology, Hong Kong
    Thesis: Identification of Live or Studio Versions of a Song via Supervised and Semi-Supervised Learning
  • 2010 – 2013: Diploma of Engineering in Information Technology, Télécom SudParis, Evry, France
  • 2007 – 2010: Preparation for national competitive entrance exams to leading French “grandes écoles”, specializing in maths and physics, Lycée Henri Poincaré, Nancy, France

Research Experience

  • Oct. 2018 – Apr. 2019: Quantitative Research InternSpecial Situation team, Qube Research & Technologies, Hong Kong
  • Sep. 2016 – Mar. 2017: Research InternRomain Couillet’s team, Large Networks and Systems Group, CentraleSupélec, Gif-sur-Yvette, France
  • Feb. 2014 – Aug. 2014: Research AssistantDepartment of Electronic and Computer Engineering, The Hong Kong University of Science & Technology, Hong Kong

Teaching Experience

Since 2014, I have been Teaching Assistant for the following classes:

  • ELEC 5450, Random Matrix Theory and Applications, Spring 2016, Spring 2017
  • ELEC 2600H, Honors Probability and Random Processes in Engineering, Fall 2017
  • ELEC 2600, Probability and Random Processes in Engineering, Fall 2014, Spring 2015, Fall 2015
  • SISP 1303, Intelligent Sensing Systems, Summer 2015


Journal papers

Conference papers

  • N. Auguin, D. Morales-Jimenez, and M. R. McKay, “Robust Linear Discriminant Analysis Using Tyler’s Estimator: Asymptotic Performance Characterization”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton (UK), May 2019.
  • N. Auguin, D. Morales-Jimenez, M. R. McKay, and R. Couillet, “Robust Shrinkage M-Estimators of Large Covariance Matrices”, IEEE Statistical Signal Processing Workshop, Palma de Mallorca (Spain), June 2016.
  • N. Auguin, and P. Fung, “Semi-Supervised Learning for Classification of Live or Studio Music Recordings”, International Conference on Language Resources and Evaluation, Reykjavik (Iceland), May 2014.
  • N. Auguin, S. Huang, and P. Fung, “Identification of Live or Studio Versions of a Song via Supervised Learning”, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung (Taiwan), October 2013.
  • D. Su, P. Fung, and N. Auguin,  “Multimodal Music Emotion Classification Using AdaBoost with Decision Stumps” , IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver (Canada), May 2013.